If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-4y-9=0
a = 4; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·4·(-9)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{10}}{2*4}=\frac{4-4\sqrt{10}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{10}}{2*4}=\frac{4+4\sqrt{10}}{8} $
| -4(3+4n)-8n=180 | | 3v-13=5v+10 | | 5m-8=4m+2 | | 3x+16=-16-3x | | 2/5(2x+1/2)=3(1/5x-2)-4 | | 11x+2=8x+17 | | (x-16)2=225 | | 3/4x+7=1/4+3 | | 3x+44+5x-2=90 | | -3x+16=-16-3x | | Y×y-y=6 | | 1.5x=x+20 | | 2x2-3=-6x-2 | | 3x+16=16-3x | | (2x-2)/x-5=2x-8 | | (x-16)^2=225 | | 3x+44+5x-2=180 | | x/0.2=11.3 | | 3(x+2)=7x+2 | | 2=5x-37 | | 7n-20=9(4n+2) | | 3.65+e=−1.4 | | 7y+×=140 | | -3x+16=16-3x | | -3=5(-3)+b | | -5-3x10=-4 | | 3(5x-5)=60 | | 2(2x-1)=(x+1+3(x-1) | | 1/3(t+7)=39 | | 5x-57x+9=64 | | 3+4v+6(7v-15);v=3 | | -3y+10=4y-11 |